Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 9665-9678, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557016

RESUMO

The electrochemical reduction of nitrate (NO3-) and nitrite (NO2-) enables sustainable, carbon-neutral, and decentralized routes to produce ammonia (NH3). Copper-based materials are promising electrocatalysts for NOx- conversion to NH3. However, the underlying reaction mechanisms and the role of different Cu species during the catalytic process are still poorly understood. Herein, by combining quasi in situ X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption spectroscopy (XAS), we unveiled that Cu is mostly in metallic form during the highly selective reduction of NO3-/NO2- to NH3. On the contrary, Cu(I) species are predominant in a potential region where the two-electron reduction of NO3- to NO2- is the major reaction. Electrokinetic analysis and in situ Raman spectroscopy was also used to propose possible steps and intermediates leading to NO2- and NH3, respectively. This work establishes a correlation between the catalytic performance and the dynamic changes of the chemical state of Cu, and provides crucial mechanistic insights into the pathways for NO3-/NO2- electrocatalytic reduction.

2.
Nanoscale ; 16(12): 5926-5940, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38441238

RESUMO

Organic chemists have made and are still making enormous efforts toward the development of novel green catalytic synthesis. The necessity arises from the imperative of safeguarding human health and the environment, while ensuring efficient and sustainable chemical production. Within this context, electrocatalysis provides a framework for the design of new organic reactions under mild conditions. Undoubtedly, nanostructured materials are under the spotlight as the most popular and in most cases efficient platforms for advanced organic electrosynthesis. This Minireview focuses on the recent developments in the use of nanostructured electrocatalysts, highlighting the correlation between their chemical structures and resulting catalytic abilities, and pointing to future perspectives for their application in cutting-edge areas.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36881406

RESUMO

Electro- and photochemical CO2 reduction (CO2R) is the quintessence of modern-day sustainable research. We report our studies on the electro- and photoinduced interfacial charge transfer occurring in a nanocrystalline mesoporous TiO2 film and two TiO2/iron porphyrin hybrid films (meso-aryl- and ß-pyrrole-substituted porphyrins, respectively) under CO2R conditions. We used transient absorption spectroscopy (TAS) to demonstrate that, under 355 nm laser excitation and an applied voltage bias (0 to -0.8 V vs Ag/AgCl), the TiO2 film exhibited a diminution in the transient absorption (at -0.5 V by 35%), as well as a reduction of the lifetime of the photogenerated electrons (at -0.5 V by 50%) when the experiments were conducted under a CO2 atmosphere changing from inert N2. The TiO2/iron porphyrin films showed faster charge recombination kinetics, featuring 100-fold faster transient signal decays than that of the TiO2 film. The electro-, photo-, and photoelectrochemical CO2R performance of the TiO2 and TiO2/iron porphyrin films are evaluated within the bias range of -0.5 to -1.8 V vs Ag/AgCl. The bare TiO2 film produced CO and CH4 as well as H2, depending on the applied voltage bias. In contrast, the TiO2/iron porphyrin films showed the exclusive formation of CO (100% selectivity) under identical conditions. During the CO2R, a gain in the overpotential values is obtained under light irradiation conditions. This finding was indicative of a direct transfer of the photogenerated electrons from the film to absorbed CO2 molecules and an observed decrease in the decay of the TAS signals. In the TiO2/iron porphyrin films, we identified the interfacial charge recombination processes between the oxidized iron porphyrin and the electrons of the TiO2 conduction band. These competitive processes are considered to be responsible for the diminution of direct charge transfer between the film and the adsorbed CO2 molecules, explaining the moderate performances of the hybrid films for the CO2R.

4.
Molecules ; 27(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35164346

RESUMO

The photocatalytic and electrocatalytic conversion of CO2 has the potential to provide valuable products, such as chemicals or fuels of interest, at low cost while maintaining a circular carbon cycle. In this context, carbon dots possess optical and electrochemical properties that make them suitable candidates to participate in the reaction, either as a single component or forming part of more elaborate catalytic systems. In this review, we describe several strategies where the carbon dots participate, both with amorphous and graphitic structures, in the photocatalysis or electrochemical catalysis of CO2 to provide different carbon-containing products of interest. The role of the carbon dots is analyzed as a function of their redox and light absorption characteristics and their complementarity with other known catalytic systems. Moreover, detailed information about synthetic procedures is also reviewed.

5.
Nat Chem ; 13(8): 800-804, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34059808

RESUMO

The electrons that nature uses to reduce CO2 during photosynthesis come from water oxidation at the oxygen-evolving complex of photosystem II. Molecular catalysts have served as models to understand its mechanism, in particular the O-O bond-forming reaction, which is still not fully understood. Here we report a Ru(IV) side-on peroxo complex that serves as a 'missing link' for the species that form after the rate-determining O-O bond-forming step. The Ru(IV) side-on peroxo complex (η2-1iv-OO) is generated from the isolated Ru(IV) oxo complex (1iv=O) in the presence of an excess of oxidant. The oxidation (IV) and spin state (singlet) of η2-1iv-OO were determined by a combination of experimental and theoretical studies. 18O- and 2H-labelling studies evidence the direct evolution of O2 through the nucleophilic attack of a H2O molecule on the highly electrophilic metal-oxo species via the formation of η2-1iv-OO. These studies demonstrate water nucleophilic attack as a viable mechanism for O-O bond formation, as previously proposed based on indirect evidence.


Assuntos
Complexos de Coordenação/química , Peróxidos/química , Água/química , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Marcação por Isótopo , Modelos Químicos , Oxirredução , Isótopos de Oxigênio/química , Rutênio/química
6.
Chem Soc Rev ; 49(19): 6884-6946, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32840269

RESUMO

The electrochemical reduction of carbon dioxide (CO2) powered by renewable energy is an attractive sustainable approach to mitigate CO2 emissions and to produce fuels or value-added chemicals. In order to tackle the challenges related to selectivity, activity, overpotential and durability, transition metal-based catalysts have been widely investigated in the last decades. In an effort to bridge the gap between the fields of homogeneous and heterogeneous catalysis, this review aims to survey the main strategies explored for the rational design of a wide variety of different metal catalysts, ranging from molecular systems to single-atom and nanostructured catalysts. Transition metal complexes containing heme and non-heme ligands have been selected to discuss the recent advances in the understanding of the structure-function relationship in molecular homogeneous catalysis as well as to summarize the main approaches proposed for the heterogenization or confinement of molecular catalysts on conductive surfaces. The main strategies to minimize catalyst cost are also presented, leading to atomically dispersed molecular-like M-Nx moieties embedded on 2D conducting materials. The superior performances of single-atom catalysts (SACs) and the structural similarity with their molecular analogs, suggest that transition metal catalysts containing well-defined sites may be intrinsically more active and selective towards CO2 conversion than the bulk heterogeneous materials. Finally, design approaches for metal nanoparticles (NPs) based on size, shape, and support tuning are summarized and compared to novel strategies based on the interaction with surface-bonded organic molecules. The studies herein presented show that the basic principles in molecular catalysis and organometallic chemistry can be effectively used to design new efficient and selective heterogeneous catalysts for CO2 reduction.

7.
J Am Chem Soc ; 142(1): 120-133, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820956

RESUMO

A mechanistic understanding of electro- and photocatalytic CO2 reduction is crucial to develop strategies to overcome catalytic bottlenecks. In this regard, for a new CO2-to-CO reduction cobalt aminopyridine catalyst, a detailed experimental and theoretical mechanistic study is herein presented toward the identification of bottlenecks and potential strategies to alleviate them. The combination of electrochemistry and in situ spectroelectrochemistry together with spectroscopic techniques led us to identify elusive key electrocatalytic intermediates derived from complex [LN4Co(OTf)2] (1) (LN4 = 1-[2-pyridylmethyl]-4,7-dimethyl-1,4,7-triazacyclononane) such as a highly reactive cobalt(I) (1(I)) and a cobalt(I) carbonyl (1(I)-CO) species. The combination of spectroelectrochemical studies under CO2, 13CO2, and CO with DFT disclosed that 1(I) reacts with CO2 to form the pivotal 1(I)-CO intermediate at the 1(II/I) redox potential. However, at this reduction potential, the formation of 1(I)-CO restricts the electrocatalysis due to the endergonicity of the CO release step. In agreement with the experimentally observed CO2-to-CO electrocatalysis at the CoI/0 redox potential, computational studies suggested that the electrocatalytic cycle involves striking metal carbonyls. In contrast, under photochemical conditions, the catalysis smoothly proceeds at the 1(II/I) redox potential. Under the latter conditions, it is proposed that the electron transfer to form 1(I)-CO from 1(II)-CO is under diffusion control. Then, the CO release from 1(II)-CO is kinetically favored, facilitating the catalysis. Finally, we have found that visible-light irradiation has a positive impact under electrocatalytic conditions. We envision that light irradiation can serve as an effective strategy to circumvent the CO poisoning and improve the performance of CO2 reduction molecular catalysts.

8.
Angew Chem Int Ed Engl ; 58(15): 4869-4874, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707782

RESUMO

The chemical inertness of abundant and commercially available alkyl chlorides precludes their widespread use as reactants in chemical transformations. Presented in this work is a metallaphotoredox methodology to achieve the catalytic intramolecular reductive cyclization of unactivated alkyl chlorides with tethered alkenes. The cleavage of strong C(sp3 )-Cl bonds is mediated by a highly nucleophilic low-valent cobalt or nickel intermediate generated by visible-light photoredox reduction employing a copper photosensitizer. The high basicity and multidentate nature of the ligands are key to obtaining efficient metal catalysts for the functionalization of unactivated alkyl chlorides.

9.
Chem Sci ; 9(9): 2609-2619, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675253

RESUMO

A new family of cobalt complexes with the general formula [CoII(OTf)2(Y,XPyMetacn)] (1R , Y,XPyMetacn = 1-[(4-X-3,5-Y-2-pyridyl)methyl]-4,7-dimethyl-1,4,7-triazacyclononane, (X = CN (1CN ), CO2Et (1CO2Et ), Cl (1Cl ), H (1H ), NMe2 (1NMe2 )) where (Y = H, and X = OMe when Y = Me (1DMM )) is reported. We found that the electronic tuning of the Y,XPyMetacn ligand not only has an impact on the electronic and structural properties of the metal center, but also allows for a systematic water-reduction-catalytic control. In particular, the increase of the electron-withdrawing character of the pyridine moiety promotes a 20-fold enhancement of the catalytic outcome. By UV-Vis spectroscopy, luminescence quenching studies and Transient Absorption Spectroscopy (TAS), we have studied the direct reaction of the photogenerated [IrIII(ppy)2(bpy˙-)] (PSIr ) species to form the elusive CoI intermediates. In particular, our attention is focused on the effect of the ligand architecture in this elemental step of the catalytic mechanism. Finally, kinetic isotopic experiments together with DFT calculations provide complementary information about the rate-determining step of the catalytic cycle.

10.
Angew Chem Int Ed Engl ; 57(17): 4603-4606, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29481726

RESUMO

We report here the first purely organometallic fac-[MnI (CO)3 (bis-Me NHC)Br] complex with unprecedented activity for the selective electrocatalytic reduction of CO2 to CO, exceeding 100 turnovers with excellent faradaic yields (ηCO ≈95 %) in anhydrous CH3 CN. Under the same conditions, a maximum turnover frequency (TOFmax ) of 2100 s-1 was measured by cyclic voltammetry, which clearly exceeds the values reported for other manganese-based catalysts. Moreover, the addition of water leads to the highest TOFmax value (ca. 320 000 s-1 ) ever reported for a manganese-based catalyst. A MnI tetracarbonyl intermediate was detected under catalytic conditions for the first time.

11.
Chemistry ; 24(13): 3305-3313, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29314370

RESUMO

Commercial carbon fibers can be used as electrodes with high conductive surfaces in reduced devices. Oxidative treatment of such electrodes results in a chemically robust material with high catalytic activity for electrochemical proton reduction, enabling the measurement of quantitative faradaic yields (>95 %) and high current densities. Combination of experiments and DFT calculations reveals that the presence of carboxylic groups triggers such electrocatalytic activity in a bioinspired manner. Analogously to the known Hantzsch esters, the oxidized carbon fiber material is able to transfer hydrides, which can react with protons, generating H2 , or with organic substrates resulting in their hydrogenation. A plausible mechanism is proposed based on DFT calculations on model systems.

13.
Chemistry ; 23(20): 4782-4793, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106930

RESUMO

The electrochemical behavior of fac-[Mn(pdbpy)(CO)3 Br] (pdbpy=4-phenyl-6-(phenyl-2,6-diol)-2,2'-bipyridine) (1) in acetonitrile under Ar, and its catalytic performances for CO2 reduction with added water, 2,2,2-trifluoroethanol (TFE), and phenol are discussed in detail. Preparative-scale electrolysis experiments, carried out at -1.5 V versus the standard calomel electrode (SCE) in CO2 -saturated acetonitrile, reveal that the process selectivity is extremely sensitive to the acid strength, producing CO and formate in different faradaic yields. A detailed spectroelectrochemical (IR and UV/Vis) study under Ar and CO2 atmospheres shows that 1 undergoes fast solvolysis; however, dimer formation in acetonitrile is suppressed, resulting in an atypical reduction mechanism in comparison with other reported MnI catalysts. Spectroscopic evidence of Mn hydride formation supports the existence of different electrocatalytic CO2 reduction pathways. Furthermore, a comparative investigation performed on the new fac-[Mn(ptbpy)(CO)3 Br] (ptbpy=4-phenyl-6-(phenyl-3,4,5-triol)-2,2'-bipyridine) catalyst (2), bearing a bipyridyl derivative with OH groups in different positions to those in 1, provides complementary information about the role that the local proton source plays during the electrochemical reduction of CO2 .

14.
Chem Commun (Camb) ; 50(93): 14670-3, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25316515

RESUMO

The effect of a local proton source on the activity of a bromotricarbonyl Mn redox catalyst for CO2 reduction has been investigated. The electrochemical behaviour of the novel complex [fac-Mn(dhbpy)(CO)3Br] (dhbpy = 4-phenyl-6-(1,3-dihydroxybenzen-2-yl) 2,2'-bipyridine), containing two acidic OH groups in the proximity of the metal centre, under a CO2 atmosphere showed a sustained catalysis in homogeneous solution even in the absence of Brønsted acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...